Спуск градиентный (Gradient descent) – это метод минимизации потерь путем вычисления градиентов потерь по отношению к параметрам модели на основе обучающих данных. Градиентный спуск итеративно корректирует параметры, постепенно находя наилучшую комбинацию весов и смещения для минимизации потерь.
[Чесалов А. Ю. Глоссариум по искусственному интеллекту: 2500 терминов/ А. Ю. Чесалов — «Издательские решения» 2022 г., 670 стр.]
Спуск градиентный — это метод оптимизации, который используется для минимизации функции потерь модели. Он помогает находить оптимальные значения параметров модели.
[50 терминов для инженера машинного обучения. (Электронный ресурс). Режим доступа: http:// Pro-DGTL.ru›blog/razrabotka/tpost/4e93vbs2p1-50-/, свободный.]