Сеть генеративно-состязательная (Generative Adversarial Network) – это алгоритм машинного обучения без учителя, построенный на комбинации из двух нейронных сетей, одна из которых (сеть G) генерирует образцы, а другая (сеть D) старается отличить правильные («подлинные») образцы от неправильных. Так как сети G и D имеют противоположные цели – создать образцы и отбраковать образцы – между ними возникает антагонистическая игра. Генеративно-состязательную сеть описал Ян Гудфеллоу из компании Google в 2014 году.
Использование этой техники позволяет, в частности, генерировать фотографии, которые человеческим глазом воспринимаются как натуральные изображения. Например, известна попытка синтезировать фотографии кошек, которые вводят в заблуждение эксперта, считающего их естественными фото. Кроме того, GAN может использоваться для улучшения качества нечётких или частично испорченных фотографий.
[Чесалов А. Ю. Глоссариум по искусственному интеллекту: 2500 терминов/ А. Ю. Чесалов — «Издательские решения» 2022 г., 670 стр.]