Терминологический словарь автоматизации строительства и производственных процессов

Свидетельство о регистрации СМИ:
ЭЛ № ФС77-79395 от 02.11.2020

ISSN: 2782-1528

DOI 10.34660/c0727-6092-6372-a

Последнее обновление словаря: 20.11.2024 - 20:05
Категории

Алгоритмы машинного обучения

Алгоритмы машинного обучения (Machine learning algorithms) – это фрагменты кода, которые помогают пользователям исследовать и анализировать сложные наборы данных и находить в них смысл или закономерность. Каждый алгоритм – это конечный набор однозначных пошаговых инструкций, которые компьютер может выполнять для достижения определенной цели. В модели машинного обучения цель заключается в том, чтобы установить или обнаружить закономерности, с помощью которых пользователи могут создавать прогнозы либо классифицировать информацию. В алгоритмах машинного обучения используются параметры, основанные на учебных данных (подмножество данных, представляющее более широкий набор). При расширении учебных данных для более реалистичного представления мира с помощью алгоритма вычисляются более точные результаты. В различных алгоритмах применяются разные способы анализа данных. Они часто группируются по методам машинного обучения, в рамках которых используются: контролируемое обучение, неконтролируемое обучение и обучение с подкреплением. В наиболее популярных алгоритмах для прогнозирования целевых категорий, поиска необычных точек данных, прогнозирования значений и обнаружения сходства используются регрессия и классификация.

[Чесалов А. Ю. Глоссариум по искусственному интеллекту: 2500 терминов/  А. Ю. Чесалов —  «Издательские решения» 2022 г., 670 стр.]

147 просмотров

Правообладателям! В случае если свободный доступ к данному термину является нарушением авторских прав, составители готовы, по требованию правообладателя, убрать ссылку, либо сам термин (определение) с сайта. Для связи с администрацией воспользуйтесь формой обратной связи.