Метод обратного распространения ошибки (Backpropagation) — метод обучения нейронных сетей, относится к методам обучения с учителем. Цель метода проста – отрегулировать веса пропорционально тому, насколько он способствует общей ошибке. Является одним из наиболее известных алгоритмов машинного обучения. На каждой итерации происходит два прохода сети — прямой и обратный. На прямом методе входной вектор распространяется от входов сети к ее выходам и формирует некоторый выходной вектор, соответствующий текущему (фактическому) состоянию весов. Затем вычисляется ошибка нейронной сети как разность между фактическим и целевым значениями. На обратном проходе эта ошибка распространяется от выхода сети к ее входам, и производится коррекция весов нейронов в соответствии с правилом.
[Глоссарий терминов машинного обучения. (Электронный ресурс). Режим доступа: http:// onff.ru›glossarij-terminov-mashinnogo-obucheniya /, свободный.]
Метод обратного распространения ошибки (Error backpropagation) – это метод вычисления градиента, который используется при обновлении весов многослойного перцептрона. Впервые метод был описан в 1974 г. А. И. Галушкиным. Метод включает в себя большое количество итерационных циклов с обучающими данными.
[Чесалов А. Ю. Глоссариум по искусственному интеллекту: 2500 терминов/ А. Ю. Чесалов — «Издательские решения» 2022 г., 670 стр.]