Терминологический словарь автоматизации строительства и производственных процессов

Свидетельство о регистрации СМИ:
ЭЛ № ФС77-79395 от 02.11.2020

ISSN: 2782-1528

DOI 10.34660/c0727-6092-6372-a

Последнее обновление словаря: 18.09.2024 - 20:52
Категории

Обучение многозадачное

Обучение многозадачное (Multitask learning) – это общий подход, при котором модели обучаются выполнению различных задач на одних и тех же параметрах. В нейронных сетях этого можно легко добиться, связав веса разных слоев. Идея многозадачного обучения была впервые предложена Ричем Каруаной в 1993 году и применялась для прогнозирования пневмонии, а также для создания системы следования дороге на беспилотных устройствах (Каруана, 1998). Фактически при многозадачном обучении модель стимулируют к созданию внутри себя такого представления данных, которые позволяет выполнить сразу много задач. Это особенно полезно для обучения общим низкоуровневым представлениям, на базе которых потом происходит «концентрация внимания» модели или в условиях ограниченного количества обучающих данных. Многозадачное обучение нейросетей для обработки естественного языка было впервые применено в 2008 году Коллобером и Уэстоном (Colbert & Weston, 2008).

[Чесалов А. Ю. Глоссариум по искусственному интеллекту: 2500 терминов/  А. Ю. Чесалов —  «Издательские решения» 2022 г., 670 стр.]

105 просмотров

Правообладателям! В случае если свободный доступ к данному термину является нарушением авторских прав, составители готовы, по требованию правообладателя, убрать ссылку, либо сам термин (определение) с сайта. Для связи с администрацией воспользуйтесь формой обратной связи.